Schedule dependent synergy of gemcitabine and doxorubicin: Improvement of in vitro efficacy and lack of in vitro‐in vivo correlation

نویسندگان

  • Douglas R. Vogus
  • Anusha Pusuluri
  • Renwei Chen
  • Samir Mitragotri
چکیده

Combination chemotherapy is commonly used to treat late stage cancer; however, treatment is often limited by systemic toxicity. Optimizing drug ratio and schedule can improve drug combination activity and reduce dose to lower toxicity. Here, we identify gemcitabine (GEM) and doxorubicin (DOX) as a synergistic drug pair in vitro for the triple negative breast cancer cell line MDA-MB-231. Drug synergy and caspase activity were increased the most by exposing cells to GEM prior to DOX in vitro. While the combination was more effective than the single drugs at inhibiting MDA-MB-231 growth in vivo, the clear schedule dependence observed in vitro was not observed in vivo. Differences in drug exposure and cellular behavior in vivo compared to in vitro are likely responsible. This study emphasizes the importance in understanding how schedule impacts drug synergy and the need to develop more advanced strategies to translate synergy to the clinic.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation, in-vitro characterization and pharmacokinetic evaluation of Brij decorated doxorubicin liposomes as a potential nanocarrier for cancer therapy

The aim of current study was to investigate the effect of Brij decoration of liposomes on in vitro and in vivo characteristics of the nanocarriers. Two hydrophilic Brij surfactants (Brij 35 and Brij 78) with almost similar molecular weight but differing in acyl chain were incorporated into liposomal bilayers at two percentages (5% and 10%). Conventional liposomes (CL) containing egg phosphatidy...

متن کامل

Preparation, optimization and toxicity evaluation of (SPION-PLGA) ±PEG nanoparticles loaded with Gemcitabine as a multifunctional nanoparticle for therapeutic and diagnostic applications

The aim of this study was to develop a novel multifunctional nanoparticle, which encapsulates SPION and Gemcitabine in PLGA±PEG to form multifunctional drug delivery system. For this aim, super paramagnetic iron oxide nanoparticles (SPIONs) were synthesized and encapsulated simultaneously with Gemcitabine (Gem) in PLGA±PEG copolymers via W/O/W double emulsification method. Optimum size and enca...

متن کامل

Preparation, optimization and toxicity evaluation of (SPION-PLGA) ±PEG nanoparticles loaded with Gemcitabine as a multifunctional nanoparticle for therapeutic and diagnostic applications

The aim of this study was to develop a novel multifunctional nanoparticle, which encapsulates SPION and Gemcitabine in PLGA±PEG to form multifunctional drug delivery system. For this aim, super paramagnetic iron oxide nanoparticles (SPIONs) were synthesized and encapsulated simultaneously with Gemcitabine (Gem) in PLGA±PEG copolymers via W/O/W double emulsification method. Optimum size and enca...

متن کامل

Preparation, in-vitro characterization and pharmacokinetic evaluation of Brij decorated doxorubicin liposomes as a potential nanocarrier for cancer therapy

The aim of current study was to investigate the effect of Brij decoration of liposomes on in vitro and in vivo characteristics of the nanocarriers. Two hydrophilic Brij surfactants (Brij 35 and Brij 78) with almost similar molecular weight but differing in acyl chain were incorporated into liposomal bilayers at two percentages (5% and 10%). Conventional liposomes (CL) containing egg phosphatidy...

متن کامل

In vitro study of radiosensitization of PLGA-SPION nanoparticles loaded with Gemcitabine

Introduction: To increase the radiation therapy efficiency, two approaches have been employed which include increasing the dose delivery or modifying the biological response to ionizing radiation. This study aimed to modify the biological response to ionizing radiation by combination therapy using radio-sensitizer agent and anticancer drug. Materials and Methods:</str...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2018